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ABSTRACT

A VARTABLE METRIC METHOD FOR LINEARLY CONSTRATINED

An algorithm is described for minimizing a nonlinear function subject to

linear inequality constraints.

The method generates a sequence

(le

with

xj*]. -

3

i 9
.3 g

where s

3

and o

step size, respectively.

Associated with each x

Cj = (clj""'cnj) which is used to compute 'j

of clj""'cnj'

tively.

At each iteration the matrix C
formula depends on the constraints that are active at x

3

3

Under appropriate assumptions it is shown that o

3 denote the search direction and the

is an (n,n)-matrix

as a suitable linear combination

is updated.
3 and

3

The update

xjﬂ' respec-

=1 for 3

sufficiently large and that {x j) converges superlinearly to the optimal

solution of the minimiza
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SIGNIFICANCE AND EXPLANATION
Linear programming deals with the problem of minimizing

cTx

subject to
Ax < b, x>0.

This has been spectacularly successful in certain classes of optimization
problems that occur, for example, in management. However most situations are
inherently nonlinear, and one would like to be able to deal with the general
problem: minimize f(x), subject to g(x) < 0, x > 0. Progress in develop-
ing practical and efficient methods for this full nonlinear problem is slow,
as one might expect due to its generality. The present paper deals with an
efficient computational method for solving the restricted problem: minimize
f(x), subject to Ax < b, x > 0, i.e. minimize a nonlinear objective func-
tion with linear inequality constraints.

The method depends on starting with a feasible solution Xqe i.e., a
solution that satisfies the inequality constraints. Then produce a sequence
G e T of feasible solutions by a variable metric method (see abstract).
Under suitable assumptions these will converge superlinearly to the optimal

solution.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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A VARIABLE METRIC METHOD FOR LINEARLY CONSTRAINED MINIMIZATION PROBLEMS

Klaus Ritter

1. Introduction

For many years variable metric methods have been used successfully in unconstrained
minimization. In 1969 Goldfarb [7]) extended the Davidon-Fletcher-Powell method (5]
to problems with linear equality and inequality constraints. 1In [6]) Gill and Murray
described variable metric methods for linearly constrained prcblems which use approxima=~
tions to the Hessian matrix of the objective function rather than to the inverse
Hessian matrix. 1In all cases it has only been shown that the method determines the
optimal solution in a finite number of steps if the objective function is convex and
quadratic. Recently, Fischer [4] proved superlinear convergence of the Davidon-Fletcher-
Powell and the BroyderrFletcher-Goldfarb-Shanno (11] method for linearly constrained
problems.

Brodlie, Gourlay and Greenstadt (2] and more recently Davidon [3) have investigated
variable metric methods where the matrix which approximates the inverse Hessian of the
objective function is factorized. 1In this paper such a factorized variable metric
method for linearly constrained problems is given. Using Fischer's results [4] it is
shown that it converges superlinearly. In the unconstrained case it reduces to a method
which was investigated in (10] and shown to be a factorized version of the Broyden-

Fletcher-Goldfarb-Shanno method.

Sponsored by the United States Army under Contract No. DAAG29-75~C-0024.




2. General description of the algorithm

We consider the following minimization problem: Minimize the function
F(x)
subject to the constraints
Ax < b ,
where x ¢ E', be E' and A is an (m,n)-matrix.
Throughout the paper it is assumed that the set
R = {x|Ax < b}
of feasible solutions in nonempty and that for every x ¢ R the gradients of the
constraints, active at x, are linearly independent. PFurthermore, we assume that F(x)
is twice continuously differentiable and denote the gradient and the Hessian matrix of
F(x) at a point x

by gj = Vr(xj) and G, = G(x_,), respectively. In order to

- j i

prove superlinear convergence we finally need the following

Assumption 1: There are positive numbers u, n and L such that

(2.1) u||u||2 < x'G(y)x :dlxllz for all x,y¢ E"
and
lle) -6l <villx -yl for a1 x,ye &" .
Assumption (2.1) implies that F(x) is uniformly convex and that there is a unique
z € R such that
F(z) < F(x) for all xe R .
Let xj € R be a point determined by the algorithm. For ease of notation we

assume that

.ixj.(b,t' i=1,...,q

lixj< (b)" "q’l:---.l,

where .',..-,l; denote the rows of A, Set

1
- M bt g ceny
'x~j (xh‘x 0, i=1, ql
and denote the orthogonal projection of qj onto 1‘, by Qj. Then gj can be written as
(2.2) g, = § Aa, +q, .
gy TS

-




Because F(x) is convex it follows from the Kuhn-Tucker-conditions (see e.g. [8))

that 'j is an optimal solution if and only if

(,J-o ana i, <0, L mRenaeslie

Suppose "3 is not an optimal solution. Then we want to determine a search direc~-

tion lj and a step size a, > 0 such that

(2.3) xj*l - xj - oj'j € R and ”'jﬂ) < r(xj) .

In order to guarantee that there exists an x with the properties (2.3) we

j+1

need a search direction 'j with

L} . -
(2.4) qjuj >0 and ‘i'j >0, i 1s¢¢40Q «
If éj # 0 we can find an sy € T, with gis, > 0. In this case ajs, =0, i = 1,....q,

and all constraints which are active at x are also active at x . If, say, lq >0

3 il

we can determine an S such that q;l >0,a's, >0 and a!s, =0, i =1,...,q9 - 1.

j i 93 i3

In this case the constraint uéx < (b)q is not active at 'j*l'

It is well-known that in order to prevent zig-zagging the decision to drop an
active constraint has to be made with some caution. Often it is based on a comparison
between Iléjll and the maximal value of the multipliers xl.....xq, defined by (2.2).
We shall adopt the policy to choose s. € T, unless

j )
2.5 g || < ~ T b TR U
@.5) 15,1 < vy maxtrs.ih
Here \yj} is a convergent sequence of positive numbers with the property that
lim Yj =0
30
if and only if lj [ ‘l‘j for infinitely many 3J.
In order to compute ‘3;' Al"""q and an 'j with the properties (2.4) we
associate with each "3' determined by the algorithm, a nonsingular (n,n) -matrix

Cj - (cljltno'cnj’ .

The columns ¢ are chosen in such a way that they form a basis of the

q*l.j""'cnj
(n-q) -dimensional subspace T

For i =1,...,9 the vector c is then uniquely

&5 i3

o™




determined by the equations

. = = sdé 0 *
ukcu 0, k 1, q k i
.1clj =]
ckjc”-o. kKoqg+* 1l,e000B &
Because ¢ Hewssl form a basis of T, it follows that the matrix
q+l. ] nj b
n
R, = e :
| ‘.E,l 1343
is positive definite on the subspace Tj' Furthermore,
Hjx = 0 for every x € -pan(nl.---.lq) .
Multiplying (2.2) by cij we have
Xl-cijqj. iwl,.... .
Thus
. A 3 3
9, - 9, & (c:”‘!j)u1
and (2.5) becomes
2.6 -? rga |l < max{c! 9., 1 =1,....q} .
(2.6) fla, L iy gl < vy maxici g, a

If (2.6) is not satisfied we choose

otherwise we set

where cc'qu > cijqj, i=1,...,q9, say.

-
With s 3 determined we can define the maximal step size o 3 as follows
3 aix v (b)1
o emin{+d—— 2] gora11 1 with a's <0
3j .l'j i3

-
where we set aj =w if a;oj > 0 for all i. Following a method suggested by Powell (9]

we compute a 63 such that

-g=




r(x,-on)<r(x,)-6&q's

b - i b ) et
and
(VF(x, = 0.8.))'s_ < 6.g's
. ke - g o
with 6] = 1 if possible. Here e.x ard 62 are constants with 0 « 6l < '.) <1 amd
Al < 0.5. Finally we set
- -
o, = min{o,, .} and “X 08, .
N’ 5 e gl > Sutte, Tty 1o

In order to complete a cycle of the algorithm we have to compute C (

"1')‘}..... !.',‘X“

301”

Depending on the constraints active at xJ and '3.1' respectively, there are four

different cases to be considered.

.
case 1: s, = Hya, and o - o5 i.e., the same constraints are active at x, and X, .. :

Therefore, 'I‘]‘1 = Tj and we can choose

c i=1,....q .

b T o ol © [

In order to obtain superlinear convergence we determine a new basis ¢

q+1,341° " "*“n, 301

for TJ such that
n
w . x-gox 1,308,900
satisfies the quasi-Newton equation, i.e.,
w o i T 1
where

e S o o
Th o SR
To this end compute

/ 91,8
v © e leiyms = oigny| 2 =V - Ei2t )y

13 859y T San ¥ ety
and set
(2.7) ci.jﬂ-clj’“ij'j' L 0qg+Lieeesh o
It can be shown (see [10)) that then
d'p, + d'H .4 p,d'H, + H 4 p!
Hey ®RB, ¢ PP " 3 .
Mo @wpa? 33 apy
cig )
e




PP—

et

In the unconstrained case this is the Broyden~Fletcher~-Goldfarb-Shanno update formula

for H (see e.g. [11])). Clearl H .4 = p.
3 42 Ry A

It remains to be shown that the vectors defined by (2.7) define a basis for 'r’.

Since s_€¢ T  we have ¢ ¢ T, for i=q+1,...,n and it suffices to show that
) ) i,3+1 3

the i=qg+1,...,n, are linearly independent or equivalently that X is

€i, 941" 341

positive definite on T . Let 5’ and 6, denote the orthogonal projection of a

and gj onto T respectively, and choose u ¢ op.n(aj.c')’) such that p;u =0 and

jn

u*0 if 4, and éj are linearly independent. Since d'p -d;pj >0 every x ¢ 1‘).

J
can be written in the form

)

x-y00& + A,

3
)y = 0. Observing that de’ = H

where (H.d.)'y = (H and H

393 = H g, we have

3% 393 = Hy9y

u‘H’u>0 if 90 .

%3
' - P 2
xlljux yll,y#od,p,#l

: - and » @ap . i .
Case 2 sj e °j<°j i.e., the constraint qu:(b)q is not active at
xj*l' Thus
T ® (xfa;x-o, P i3 .
Si sevey form a basi AP we se
nce cqj crlj orm a s o j+q can set
ci.j#l-clj' i=q,Q+11,e0.0n &
With
n
H = !
i ‘L €1,341%4, 30
we have

Hjﬂx-l!jx for x € Tj

because cqj is orthogonal to ¢

qﬂ,j""'cnj' 1f we set

el.e
e S I
c -0 . - € 4 1i=s1,....9~1
1 .
341 ij cqjcqj qj

then these vectors are orthogonal to ‘l"’1 and

- '
al"l:":h_1 =0, i,k=1,...,9-1, i *k, aCk, 441 =1 .

i g Z BREEI
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Case 3: s =Hg and 0, = 0,, a new constraint is active at x o Kl & be
R ) 373 b) 3 i+l q+1
the gradient of this new active constraint. Then
= ¢ - i = “ren ) .
T)ol (xlaix o0, iw1,; q+ 1)

Since we consider ") as an approximation to the inverse Hessian matrix of F(x) on

the subspace Tj we want to determine a basis cq*Z.j'l""'cn,)Ol of Tj‘l such that
with
n
Wiy ™ ot 4,341,341
we have
"jtlx = H)x for x € TjOl .

This can be done by using a lemma given in (1] which in our notation is as follows.

Lesana 1: Let v = H.a and w = v'a

2+l oy " c;j‘qOI where ve {q+1,...,n}. 1If

w =0 set
- -
Ci,j#l ij' i g # Lssxsoie: L9,

otherwise set, for i = q + 1,...,n, i # v,

1 - tc'_.a
c = c -c!.,a L, o W - X v = tc'.a
i, i+l ij ij g+l v'a vj g+l
g+l
where
. 2 . 2
o Clegjl + w o+ (cvj.qol)
w

is a solution of the equation
i 2 4 B
i wt” + 2cvj.q+1t 1=0.
2
i Then
{ i) ‘&¢1°1,j+1'°' i=q+1l,...,n, 1%V
4
- ii) spcnlv,c”, i=q+1l,...,n, i# v} = 'p‘n(cqﬂ.j"“'enj)

iii) Ci j"ldh 341 = cijdkj' i,k = q+l,...,n, i#*v, k#*v,

’ ’
. d . = .
where ‘xj'dk,j¢l € Tj‘l such that "jdk,j+1 = °k,j+1 and "j X3 ck’

et S G e T




e

Clearly, €5, 501" i=q+1l,...,n, i # v, form a basis for T)d. Furthermore,

“ . = -
Hia%, 30 Iocgsn,90%, 901 " %K,901 " "%, g0

i=q+l
ity
which implies “jﬂx = njx for x ¢ Tj’l'
To define the remaining columns of cjtl let

" o Z
nqﬂ - aqﬂ A (clj.qﬂ"s .

Then a oy is the orthogonal projection of .qtl onto ‘r’ and therefore orthogonal to
q

al,...,aq. Since ‘qn is also orthogonal to Tjél each of the vectors

a
. it
i 157
qtl q+l

- PP

L ’ Ld S .
"'s,jn 13 .qﬂcij,cv,j*l' i 1, q

is orthogonal to Tj*l and has the property that
: = * = dony » &' = =
.kcx,j¢1 0, k 1, k 1, q+1 .kck.)ﬂ 1
-

Case 4: s = ¢ and o0, = 0,, i.e., instead of the constraint a'x < (b) a new
ppe—— qj 3 ] g = q

constraint, say, n&ﬂx < (b)qﬂ

is an extreme point of R, set

is active at x If all gq = n, 1.8.) i =

j+1° b

c

c "
q,3*1 ‘q+1°qj

c

c '—.“n—'Co
1) &y Y

= - consliy #* .
ci.jﬂ i 1, n i#¥ g

If q < n use the procedure of Case 3 to add the constraint
y %
nqﬂx < (b)q\’1 to the set of active constraints. Denote the resulting matrix by cjﬂ'

Then use the method of Case 2 with c’ replaced by ¢ to drop the constraint

3+l
a"lx < (b) q The resulting matrix H 341 has the property

Hig % = Hx for xe (xh‘: =0, i=1,...,q +1}.




3. Detailed statement of the algorithm

It is assumed that the algorithm starts with an extreme point X, of the feasible

region R which can be obtained by solving a linear minimization problem. Let

a;xo = (b)i' i=),....0

.ix0< (b)i' ion+l,.ccom .

Set

¥ e = L

D (nl.....nn) and Co =D (cm....,cno) '
then the matrix co has the properties described in the previous section. In addition
to the matrix cj we associate with each xj. generated by the algorithm, a set

J(xj) = {ulj....,anj)
where an & {0,y vnnills T GU = 0, then CU is orthogonal to the gradients of
all constraints active at x_ . If GU = k > 0, then the constraint A)"x < (b)k is
2 3 . -
active at xj and akcu 1. Clearly
aio-i. 1= l,ceeold &

. At the beginning of the jth cycle of the algorithm the following data is available:

xj € R, qj = VF(x.,), pgsitive constants vj. Y 61 and 6§, with 61 < 62 <1,

2

) and the matrix Cj are given. The jtnh

3

61 < 0.5, Y < 1. Furthermore, the set J(xj

cycle of the algorithm consists of the following 3 steps.

Step 1: Computation of the search direction 8y Compute <:ijqj for all i with

aij > 0 and determine k = "j such that
cl'dqj :cijqj for all i with GU %0 .
If
o, = I (etg0a || < v.e'g
j a, >0 1373 ey, 3k37)
b
set

'j-ckj and 7341'"1 '

otherwise set




s, = (c! Je,. and 4 -y, .
B 2_0 13%3" 13 Tyey " 3
ij
If 'j = 0, stop; otherwise go to Step 2.
Step 2: Computation of the step size oj: If a;nj >0 for i=1,...,.m set
otherwise set
+ %, =~ (b}
0, = min LJ, | for all i with a's, <0).
ai'j 173

Determine

and

with o0,
J

°j such that
E‘(xj - °j'j) -f-“xj) - 61019-;‘3j
(Vl’(xj - oj.j)) sy < 62933j
=1 if possible. Set
°j = min(cj,oj} and X5 " xj - °j'j <

Compute 9j+1 and go to Step 3.
Step 3: Computation of Cj+1i
*
Ca 1: S c!.g9.) and o0, <0
Case 1: 8, = Z_o (e}4950¢45 5 <9y
ij
For all i with aij > 0 set
Ci,9¢1 7
For all i with nij = 0 compute
R e T
i3 s i ij75+1
3 osyley -9y, g
and set
°i,941 T iy
Let
Cj+l = (cl.jﬂ"”'cn,j
replace j with j + 1 and go to Step 1.

«10~

(no change inthe set of active constraints).

c

ij

. i R s
cu"j(’ 2 (1 7 ’ghi)"a)

+ w, .8

b

*1)1 J(xj*l) 'J(Xj) '




-
Case 2: 'j = ckj and 0J < Oj. (dropping an active constraint). Set
Ci,)d - c‘3 for i =k and all i with GU -0,
.
(- o =c -—u—l‘lc,forall i#*k with a >0 .
i,3+1 i3 el.a k3 i)
k] kj
Set
Cjtl = (Cl,jfl""'cn.jﬂ) and J‘xj*l) - hl,j#l""'un,jﬂ)
where

- sows i #
Qi.j*l -uij for i 1, n, i k

“k,j*l ¢
Replace j with j + 1 and go to Step 1.

*
Case 3: s:‘l = Z (c!g.)c.. and o0, = ¢ » (adding a new active constraint). Let

PR e i M 3 j
1)
a, be the gradient of the new active constraint. Select any v with “vj = 0 and
compute
v, = ): (c!.a,)c and w, = v'a -(c'a)z.
j R, i3 2 13 j j L vj 2
ij
If w, = 0 set
J
= #* =
ci,jﬂ cij for all i v with “1j o,
otherwise
1 t.c'.a ]
= - ’ - .
ci,jﬂ cij cij“l v;al vj tjcvj '
where
_1_ 2 ' 2 S ]
tj - “’j [‘\/wj + (cvj‘l) cvj‘l .
‘ Compute
a =a - J (c'a)a
L L ij 2" a
au>0 ij
and set
-11~ !




K3
eI,
ci,j*l = Cij - (Cijal)cv,jOI for all i with ui) > 0k o
Set
Cj*l = (Cl,jol""’cn,jbl) and J(x)ol) = (gl,jol""'"n,j»l
where

- i = coahte 19
ui,j¢1 Gij' fox i l:» n i v

uv.j'l = R
Replace j with j + 1 and go to Step 1.

*
Case 4: sj - e and Oj = oj, (adding and dropping an active constraint). If

kj
0,, > 0; @],/ 8¢
1]
4 ck.
k,i+l alckj
a'c
- __l__i.i = i #

ci,j+1 Cij ‘ickj ckj, i loeooony, 4 k .

If at least one “ij = 0 use the procedure given in Case 3 to compute a new matrix éj#l'

Then use the method of Case 2 with C, and a replaced with C and &, respec-

3 vj itl
tively, to determine Cj+1 and J(xj+1). Replace j with j + 1 and go to Step 1.
Remark :
= = 1. .
i) In Step 1 we set Yj+1 yvj < Yj whenever 'j ckj' e., whenever an active
constraint is dropped. Since in the convergence proof we only use the fact that (yj)
is a convergent sequence of positive numbers with \

lim vy, = 0 iff s, 6 = c

5 4 for infinitely many j
jre

kj

any method which produces a sequence with these properties can be used.
ii) The algorithm can easily be modified to handle linear equality constraints.

Since equality constraints are always active the only difference is that a vector Cij

] -12=

r = - " 7T SRty o T F R Ve <l E" '7"&‘\".‘2""'0:_3‘?@,".\-‘_




corresponding to an equality constraint is not a candidate for the search direction s

in Step 1 of the algorithm. This could be indicated by choosing aU e -] for a1l |

such that cij corresponds to an equality constraint.

=13~

UESSn—
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4. Superlinear convergence

First we observe that for each x. and generated by the algorithm we have

*n

x € R and P(x) ) < F(x),). Furthermore, the algorithm terminates with an x

3 % + j
if and only if xJ satisfies the Kuhn-Tucker conditions and is therefore an optimal
solution.

We assume now that the algorithm generates an infinite sequence (le and shall
prove that, under the assumption stated in Section 2, this sequence converges super-

linearly to the optimal solution z. The convergence proof is closely related to the

proof given by Fischer [4].

Lemma 2: There is j  and I C {1,...,m} such that, for j > jo.
. =
aixj (b)i' ieI
~ ;
aixj < ‘b)i' R B

Proof: For every j let Ij C {1,...,m} be such that i € xj if and only if

a;xj = (b),. Furthermore, let J € {0,1,...)} be such that an active constraint is
dropped at xj if and only if j € J.
Suppose that the lemma is not true. Then J is an infinite set and

@={rc{1,...,m}1 =1, for infinitely many j € J}

3
is non-~empty. Choose any I € 2 which has the maximal number of elements of all I C Q.
Set

Jl-(jc JIIj-I) :
There is k € I and an infinite subset I, C 9y such that for each xj. je g

always the constraint a,‘(x < (b)k is dropped from the set of active constraints. Since

+0 as j » ®» it follows from Step 1 of the algorithm that éj +0 as j + =,

21

b
jeua

2 where &j denotes the orthogonal projection of gj onto

T = {xlaix 8, 20 .

By the uniform convexity of F(x) this implies

3 +x as j o+, je J,

-14-
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where x € R is the unique solution of
min{F(x)|a'x = (b)., ie 1} .
i i
Let

(4.1) VP(x) = J_ Aa and ) =max{A,, ie I}.
je1 L b :

First suppose that ) < 0. By Taylor's theorem there are numbers 0 < (J, "j C A |

such that for, j € J

c'jVF(;() + cij(;( L3 3

3% = (xj - X))(x, - x)

j 3
BT €50y =l x5 = x|l < nlle, JI I xy = =l
and

(x = x)'g, = (x = X) "UF (x) + (xj - X)G(x + ny(x; - x)) (x

¥ =~ 2) :u”xj-;tuz-

3

Thus (xj - i)'éj = (xj - f()'qj implies ”63”1 ullxj- x||, and we have

a u I
llall :n—"c—km cxs9; for je g, .

Since Yj * 0 as j > ® we obtain the contradiction that for j € J sufficiently

2
large no active constraint is dropped.
To complete the proof it suffices, therefore, to show that X < 0. Suppose A > 0.
Since
c'.9. = max{c! a >0} +) as + ® € J
%49 qul i3 jre, 3

it follows that

2

and s, = c for j e J

i~ k3 2’

aje, ::Ilsjll for je J, and some ¢ >0 .

Since F(x) is bounded from below Step 2 of the algorithm implies that

']
0, +0 as j+=, jeg

b] 2
and
o; = °j for infinitely many j e Iy
Thus there is £ € {1,...,m} - 1 and an infinite subset Jg c Jz such that the constraint
% =
aix < (b), is active at X541 je J,- Furthermore asx = (b), since
"xj’l bl xj" + 0 as j *®, j' J;‘ |
-15- |
}
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For J € J} let r, > 0 be the largest integer such that for x).l....,x)"
]
the same constraints are active. Since the definition of 1 implies that for all but
at most finitely many "j&r an active constraint is dropped it follows again from

3
Step 1 of the algorithm that

"
where x is the unique solution of

(4.2) min{F(x)|a!x = (b),, ie1-{k}+{2}}.

tat I w 2 (x)+ {8} am

(4.3 WF(x J
-3) Pix) = L T .

i€l
Because x is a feasible solution of problem (4.2) and F(x) and F(x.) are
both cluster points of the monotone decreasing sequence (P(xj)) it follows that
F(x) = F(x) and x = x . Subtracting (4.3) from (4.2) we have therefore

Ak‘k - 1,'3'. =0,

which by the linear independence of gradients of active constraints gives the contradic-
tion that ) = Ak = 0.
Theorem: Let Assumption 1 be satisfied. The sequence (xj) converges superlinearly
to the optimal solution of the problem

min{F(x) |ax < b} .
For j sufficiently large oj = 1.
Proof: Let jo and I be defined as in Lemma 2. For j > jo the application of the
algorithm to the given problem is equivalent to its application to the problem

(4.4) -m(r(x)laix =), ie : 2

Therefore, it follows from Theorem 2.1 in (4] that °j =1 for j sufficiently large
and that {xj) converges superlinearly to the optimal solution z of (4.4). Let
VF(z) = Z Aa
te1 i%a

e ———— Vg g TR e .
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. and let g, denote the orthogonal projection of 9, onto {x|a'x = 0, i€ I}, Since

L j E -
¥ for some y >o,||qj||-oo as j + = and
c,"jgjox-luhl. ie I} as -+ =,

it follows from “;j" > 'jcl':jqj for j > j,, that A < 0. Since z ¢ R, it is the

optimal solution of the given problem.
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